Advertisements
Advertisements
Question
दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:
y = x4; x = 1, x = 5 एवं x-अक्ष
Solution
वक्र y = x4 बिन्दु (0, 0) से होकर जाता है। OY रेखा सममित है।
अब, y = x4
`dy/dx = 4x^3`
`dy/dx` का चिन्ह -ve से +ve में बदलता है जब x, x = 0 से होकर आगे बढ़ता है।
∴ x = 0 निम्नतम बिन्दु है।
∴ y = x4, x = 1, x = 5 तथा x-अक्ष से घिरे क्षेत्र का क्षेत्रफल
= क्षेत्र PABQ का क्षेत्रफल
`= int_1^5 y dx = int_1^5 x^4 dx`
`= [x^5/5]_1^5 = [5^5/5 - 1/5]`
`= [5^4 - 1/5]`
`= 625 - 1/5`
`= (3125 - 1)/5`
`= 3124/5`
= 624.8 वर्ग इकाई
APPEARS IN
RELATED QUESTIONS
वक्र y2 = x रेखाओं x = 1, x = 4 एवं x-अक्ष से घिरे क्षेत्र का प्रथम पाद में क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में वक्र y2 = 9x, x = 2, x = 4 एवं x-अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में x2 = 4y, y = 2, y = 4 एवं y-अंक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/16 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/4 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 रेखा `x = sqrt3 "y"` एवं x-अक्ष द्वारा घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
छेदक रेखा `x = a/sqrt2` द्वारा वृत्त x2 + y2 = a2 के छोटे भाग का क्षेत्रफल ज्ञात कीजिए।
यदि वक्र x = y2 एवं रेखा x = 4 से घिरा हुआ क्षेत्रफल रेखा x = a द्वारा दो बराबर भागों में विभाजित होता है तो a का मान ज्ञात कीजिए।
परवलय y = x2 एवं y = |x| से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र x2 = 4y एवं रेखा x = 4y - 2 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 एवं रेखाओं x = 0, x = 2 से घिरे क्षेत्र का क्षेत्रफल है:
वक्र y2 = 4x, y-अक्ष एवं रेखा y = 3 से घिरे क्षेत्र का क्षेत्रफल है:
दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:
y = x2; x = 1, x = 2 एवं x-अक्ष
प्रथम चतुर्थांश में सम्मिलित एवं y = 4x2, x = 0, y = 1 तथा y = 4 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय y = 4ax एवं रेखा y = mx से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय 4y = 3x2 एवं रेखा 2y = 3x + 12 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/9 + "y"^2/4 = 1` एवं रेखा `x/3 + "y"/2 = 1` से घिरे लघु क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/"a"^2 + "y"^2/"b"^2 = 1` एवं रेखा `x/"a" + "y"/"b" = 1` से घिरे लघु क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्रों {(x, y) : y ≥ x2 तथा y = |x|} से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = x3, x-अक्ष एवं कोटियों x = -2, x = 1 से घिरे क्षेत्र का क्षेत्रफल है:
क्षेत्र y2 ≥ 6x और वृत्त x2 + y = 16 में सम्मिलित क्षेत्र का क्षेत्रफल है-
वक्र y = x|x|, x-अक्ष एवं कोटियों x = -1 तथा x = 1 से घिरे क्षेत्र का क्षेत्रफल है:
y-अक्ष, y = cosx एवं y = sin x, 0 ≤ x ≤ `pi/2` घिरे क्षेत्र का क्षेत्रफल है-