Advertisements
Advertisements
Question
दीर्घवृत्त `x^2/9 + "y"^2/4 = 1` एवं रेखा `x/3 + "y"/2 = 1` से घिरे लघु क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
Solution
दिया है :
`x^2/9 + "y"^2/4 = 1` ...(i)
तथा `x/3 + "y"/2 = 1` ....(ii)
समीकरण (i) दीर्घवृत्त जबकि (ii) एक सीधी रेखा है जो बिन्दु (3, 0) और (0, 2)
अभीष्ट क्षेत्रफल
`= int_0^3 "y dx" ("दीर्घवृत्त के लिए") - int_0^3 "y dx" ("रेखा के लिए")`
`= int_0^3 2/3 sqrt(9 - x^2) " dx" - int_0^3 2/3 (3 - x) " dx"`
`= 2/3 [x/2sqrt(9 - x^2) + 2 sin^-1 x/3]_0^3 - 2/3 [3x - x^2/2]_0^3`
`= 2/3 [0 + 9/2 xx pi/2 - 0 - 0] - 2/3 [9 - 9/2]`
`= 2/3 xx (9pi)/4 - 2/3 xx 9/2`
`= 2/3 [(9pi)/4 - 9/2]`
`= 2/3 xx 9/4(pi - 2)`
`= 3/2 (pi - 2)` वर्ग इकाई
APPEARS IN
RELATED QUESTIONS
वक्र y2 = x रेखाओं x = 1, x = 4 एवं x-अक्ष से घिरे क्षेत्र का प्रथम पाद में क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में वक्र y2 = 9x, x = 2, x = 4 एवं x-अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में x2 = 4y, y = 2, y = 4 एवं y-अंक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/16 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/4 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 रेखा `x = sqrt3 "y"` एवं x-अक्ष द्वारा घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
यदि वक्र x = y2 एवं रेखा x = 4 से घिरा हुआ क्षेत्रफल रेखा x = a द्वारा दो बराबर भागों में विभाजित होता है तो a का मान ज्ञात कीजिए।
परवलय y = x2 एवं y = |x| से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र x2 = 4y एवं रेखा x = 4y - 2 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y2 = 4x एवं रेखा x = 3 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 एवं रेखाओं x = 0, x = 2 से घिरे क्षेत्र का क्षेत्रफल है:
वक्र y2 = 4x, y-अक्ष एवं रेखा y = 3 से घिरे क्षेत्र का क्षेत्रफल है:
दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:
y = x2; x = 1, x = 2 एवं x-अक्ष
दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:
y = x4; x = 1, x = 5 एवं x-अक्ष
x = 0 एवं x = 2π तथा वक्र y = sin x से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय y = 4ax एवं रेखा y = mx से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय 4y = 3x2 एवं रेखा 2y = 3x + 12 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय x2 = y, रेखा y = x + 2 एवं x अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्रों {(x, y) : y ≥ x2 तथा y = |x|} से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
क्षेत्र {(x, y): y2 ≤ 4x, 4x2 + 4y2 ≤ 9} का क्षेत्रफल ज्ञात कीजिए।
क्षेत्र y2 ≥ 6x और वृत्त x2 + y = 16 में सम्मिलित क्षेत्र का क्षेत्रफल है-
वक्र y = x|x|, x-अक्ष एवं कोटियों x = -1 तथा x = 1 से घिरे क्षेत्र का क्षेत्रफल है:
y-अक्ष, y = cosx एवं y = sin x, 0 ≤ x ≤ `pi/2` घिरे क्षेत्र का क्षेत्रफल है-