English

दीर्घवृत्त yx29+y24=1 एवं रेखा yx3+y2=1 से घिरे लघु क्षेत्र का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

दीर्घवृत्त `x^2/9 + "y"^2/4 = 1` एवं रेखा `x/3 + "y"/2 = 1` से घिरे लघु क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

Sum

Solution

दिया है :

`x^2/9 + "y"^2/4 = 1`      ...(i)

तथा `x/3 + "y"/2 = 1`   ....(ii)

समीकरण (i) दीर्घवृत्त जबकि (ii) एक सीधी रेखा है जो बिन्दु (3, 0) और (0, 2)

अभीष्ट क्षेत्रफल

`= int_0^3 "y dx" ("दीर्घवृत्त के लिए") - int_0^3 "y dx" ("रेखा के लिए")`

`= int_0^3 2/3 sqrt(9 - x^2) " dx" - int_0^3 2/3 (3 - x) " dx"`

`= 2/3 [x/2sqrt(9 - x^2) + 2 sin^-1  x/3]_0^3 - 2/3 [3x - x^2/2]_0^3`

`= 2/3 [0 + 9/2 xx pi/2 - 0 - 0] - 2/3 [9 - 9/2]`

`= 2/3 xx (9pi)/4 - 2/3 xx 9/2`

`= 2/3 [(9pi)/4 - 9/2]`

`= 2/3 xx 9/4(pi - 2)`

`= 3/2 (pi - 2)` वर्ग इकाई

shaalaa.com
साधारण वक्रों के अंतर्गत क्षेत्रफल
  Is there an error in this question or solution?
Chapter 8: समाकलनों के अनुप्रयोग - अध्याय 8 पर विविध प्रश्नावली [Page 392]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 8 समाकलनों के अनुप्रयोग
अध्याय 8 पर विविध प्रश्नावली | Q 8. | Page 392

RELATED QUESTIONS

वक्र y2 = x रेखाओं x = 1, x = 4 एवं x-अक्ष से घिरे क्षेत्र का प्रथम पाद में क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थांश में वक्र y2 = 9x, x = 2, x = 4 एवं x-अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थांश में x2 = 4y, y = 2, y = 4 एवं y-अंक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


दीर्घवृत्त `x^2/16 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


दीर्घवृत्त `x^2/4 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 रेखा `x = sqrt3  "y"`  एवं x-अक्ष द्वारा घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


यदि वक्र x = y2 एवं रेखा x = 4 से घिरा हुआ क्षेत्रफल रेखा x = a द्वारा दो बराबर भागों में विभाजित होता है तो a का मान ज्ञात कीजिए।


परवलय y = x2 एवं y = |x| से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x2 = 4y एवं रेखा x = 4y - 2 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y2 = 4x एवं रेखा x = 3 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 एवं रेखाओं x = 0, x = 2 से घिरे क्षेत्र का क्षेत्रफल है:


वक्र y2 = 4x, y-अक्ष एवं रेखा y = 3 से घिरे क्षेत्र का क्षेत्रफल है:


दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:

y = x2; x = 1, x = 2  एवं x-अक्ष


दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:

y = x4; x = 1, x = 5 एवं x-अक्ष


x = 0 एवं x = 2π तथा वक्र y = sin x से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय y = 4ax एवं रेखा y = mx से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय 4y = 3x2 एवं रेखा 2y = 3x + 12 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय x2 = y, रेखा y = x + 2 एवं x अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्रों {(x, y) : y ≥ x2 तथा y = |x|} से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


क्षेत्र {(x, y): y2 ≤ 4x, 4x2 + 4y2 ≤ 9} का क्षेत्रफल ज्ञात कीजिए।


क्षेत्र y2 ≥ 6x और वृत्त x2 + y = 16 में सम्मिलित क्षेत्र का क्षेत्रफल है-


वक्र y = x|x|, x-अक्ष एवं कोटियों x = -1 तथा x = 1 से घिरे क्षेत्र का क्षेत्रफल है:


y-अक्ष, y = cosx एवं y = sin x, 0 ≤ x ≤ `pi/2` घिरे क्षेत्र का क्षेत्रफल है-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×