English

X = 0 एवं x = 2π तथा वक्र y = sin x से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

x = 0 एवं x = 2π तथा वक्र y = sin x से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

Sum

Solution

y = sin x के ग्राफ पर कुछ बिन्दु इस प्रकार हैं। इन बिन्दुओं को वक्र द्वारा मिलाने से ग्राफ प्राप्त होता है।

x 0 `pi/6` `pi/4` `pi/3` `pi/2` `(5pi)/6` `(3pi)/4` `(2pi)/3` `pi`
y 0 0.5 0.7 0.8 1 0.5 0.7 0.8 0

अभीष्ट क्षेत्र का क्षेत्रफल

= वक्र OPAQB तथा x-अक्ष से घिरे क्षेत्र का क्षेत्रफल

= क्षेत्र OPA का क्षेत्रफल + क्षेत्र AOB का क्षेत्रफल

= 2 क्षेत्र OPA का क्षेत्रफल

`= 2 int_0^pi sin x dx`

`= 2 [- cos x]_0^pi`

= 2[1 + 1]

= 2 × 2

= 4 वर्ग इकाई

shaalaa.com
साधारण वक्रों के अंतर्गत क्षेत्रफल
  Is there an error in this question or solution?
Chapter 8: समाकलनों के अनुप्रयोग - अध्याय 8 पर विविध प्रश्नावली [Page 392]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 8 समाकलनों के अनुप्रयोग
अध्याय 8 पर विविध प्रश्नावली | Q 5. | Page 392

RELATED QUESTIONS

वक्र y2 = x रेखाओं x = 1, x = 4 एवं x-अक्ष से घिरे क्षेत्र का प्रथम पाद में क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थांश में वक्र y2 = 9x, x = 2, x = 4 एवं x-अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थांश में x2 = 4y, y = 2, y = 4 एवं y-अंक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


दीर्घवृत्त `x^2/16 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


दीर्घवृत्त `x^2/4 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 रेखा `x = sqrt3  "y"`  एवं x-अक्ष द्वारा घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


छेदक रेखा `x = a/sqrt2` द्वारा वृत्त x2 + y2 = a2 के छोटे भाग का क्षेत्रफल ज्ञात कीजिए।


परवलय y = x2 एवं y = |x| से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x2 = 4y एवं रेखा x = 4y - 2 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y2 = 4x एवं रेखा x = 3 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 एवं रेखाओं x = 0, x = 2 से घिरे क्षेत्र का क्षेत्रफल है:


दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:

y = x2; x = 1, x = 2  एवं x-अक्ष


दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:

y = x4; x = 1, x = 5 एवं x-अक्ष


प्रथम चतुर्थांश में सम्मिलित एवं y = 4x2, x = 0, y = 1 तथा y = 4 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय 4y = 3x2 एवं रेखा 2y = 3x + 12 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


दीर्घवृत्त `x^2/9 + "y"^2/4 = 1` एवं रेखा `x/3 + "y"/2 = 1` से घिरे लघु क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


दीर्घवृत्त `x^2/"a"^2 + "y"^2/"b"^2 = 1` एवं रेखा `x/"a" + "y"/"b" = 1` से घिरे लघु क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय x2 = y, रेखा y = x + 2 एवं x अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


क्षेत्र {(x, y): y2 ≤ 4x, 4x2 + 4y2 ≤ 9} का क्षेत्रफल ज्ञात कीजिए।


वक्र y = x3, x-अक्ष एवं कोटियों x = -2, x = 1 से घिरे क्षेत्र का क्षेत्रफल है:


क्षेत्र y2 ≥ 6x और वृत्त x2 + y = 16 में सम्मिलित क्षेत्र का क्षेत्रफल है-


y-अक्ष, y = cosx एवं y = sin x, 0 ≤ x ≤ `pi/2` घिरे क्षेत्र का क्षेत्रफल है-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×