English
Karnataka Board PUCPUC Science Class 11

In the Following Figure Shows a Man of Mass 60 Kg Standing on a Light Weighing Machine Kept in a Box of Mass 30 Kg. the Box is Hanging from a Pulley Fixed to the - Physics

Advertisements
Advertisements

Question

In the following figure shows a man of mass 60 kg standing on a light weighing machine kept in a box of mass 30 kg. The box is hanging from a pulley fixed to the ceiling by a light rope, the other end of which is held by the man himself. If the man manages to keep the box at rest, what is the weight recorded on the machine? What force should he exert on the rope to record his correct weight on the machine?

Sum

Solution

(i) Given, mass of the man = 60 kg
Let W' = apparent weight of the man in this case


From the free-body diagram of the man,
W' + T − 60g = 0
⇒ T = 60g − W'    ...(i)

From the free-body diagram of the box,
T − W' = 30g = 0    ...(ii)

From equation (i), we get:
60g − W' − W' − 30g = 0
⇒ W' = 15g
Hence, the weight recorded on the machine is 15 kg.

(ii) To find his actual weight, suppose the force applied by the men on the rope is T because of which the box accelerates upward with an acceleration a'.Here we need to find\[\ T'\]
Correct weight = W = 60g


From the free-body diagram of the man,
T' + W − 60g − 60a = 0
⇒ T' − 60a = 0             
⇒ T' = 60a    ...(i)

From the free-body diagram of the box,
T' − W − 30g − 30a = 0
⇒ T' −  60g − 30g − 30a = 0
⇒ T' = 30a − 900     ...(ii)

From equations (i) and (ii), we get:
T' = 2T' − 1800
T' = 1800 N
So, the man should exert a force of 1800 N on the rope to record his correct weight on the machine.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Newton's Laws of Motion - Exercise [Page 82]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 5 Newton's Laws of Motion
Exercise | Q 39 | Page 82

RELATED QUESTIONS

A body of mass 0.40 kg moving initially with a constant speed of 10 m s–1 to the north is subject to a constant force of 8.0 N directed towards the south for 30 s. Take the instant the force is applied to be t = 0, the position of the body at that time to be x = 0, and predict its position at t = –5 s, 25 s, 100 s.


The rear side of a truck is open and a box of 40 kg mass is placed 5 m away from the open end as shown in Figure. The coefficient of friction between the box and the surface below it is 0.15. On a straight road, the truck starts from rest and accelerates with 2 m s–2. At what distance from the starting point does the box fall off the truck? (Ignore the size of the box).


A person drops a coin. Describe the path of the coin as seen by the person if he is in (a) a car moving at constant velocity and (b) in a free falling elevator.


A free 238U nucleus kept in a train emits an alpha particle. When the train is stationary, a nucleus decays and a passenger measures that the separation between the alpha particle and the recoiling nucleus becomes x at time t after the decay. If the decay takes place while the train is moving at a uniform velocity v, the distance between the alpha particle and the recoiling nucleus at a time t after the decay, as measured by the passenger, is


A particle of mass 50 g moves in a straight line. The variation of speed with time is shown in the following figure. Find the force acting on the particle at t = 2, 4 and 6 seconds.


A man has fallen into a ditch of width d and two of his friends are slowly pulling him out using a light rope and two fixed pulleys as shown in the following figure. Show that the force (assumed equal for both the friends) exerted by each friend on the road increases as the man moves up. Find the force when the man is at a depth h.


A person is standing on a weighing machine placed on the floor of an elevator. The elevator starts going up with some acceleration, moves with uniform velocity for a while and finally decelerates to stop. The maximum and the minimum weights recorded are 72 kg and 60 kg, respectively. Assuming that the magnitudes of acceleration and deceleration are the same, find (a) the true weight of the person and (b) the magnitude of the acceleration. Take g = 9.9 m/s2.


Consider the Atwood machine of the previous problem. The larger mass is stopped for a moment, 2.0 s after the system is set into motion. Find the time that elapses before the string is tight again.


Consider the situation shown in the following figure  All the surfaces are frictionless and the string and the pulley are light. Find the magnitude of acceleration of the two blocks.


In the following figure, m1 = 5 kg, m2 = 2 kg and F = 1 N. Find the acceleration of either block. Describe the motion of m1 if the string breaks but F continues to act.


Let m1 = 1 kg, m2 = 2 kg and m3 = 3 kg in the following figure. Find the accelerations of m1, m2 and m3. The string from the upper pulley to m1 is 20 cm when the system is released from rest. How long will it take before m1 strikes the pulley?


Find the acceleration of the 500 g block in the following figure.


A monkey of mass 15 kg is climbing a rope fixed to a ceiling. If it wishes to go up with an acceleration of 1 m/s2, how much force should it apply on the rope? If the rope is 5 m long and the monkey starts from rest, how much time will it take to reach the ceiling?


State the Newton's second law of motion. What information do you get from it?


The unit of linear momentum is :


An electron of mass 9 × 10−31 kg is moving with a linear velocity of 6 × 107 ms−1. Calculate the linear momentum of electron.


Prove mathematically F = ma


Multiple Choice Question. Select the correct option.

A force acts on a body of mass 3 kg such that its velocity changes from 4 ms−1 to 10 ms−1. The change in momentum of the body is


A metre scale is moving with uniform velocity. This implies ______.


Figure shows (x, t), (y, t ) diagram of a particle moving in 2-dimensions.


(a)


(b)

If the particle has a mass of 500 g, find the force (direction and magnitude) acting on the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×