Advertisements
Advertisements
Question
सिद्ध कीजिए कि A = {1, 2, 3, 4, 5} में, R = {(a, b) : |a - b| सम है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। प्रमाणित कीजिए कि {1, 3, 5} के सभी अवयव एक-दूसरे से संबंधित हैं और समुच्चय {2, 4} के सभी अवयव एक-दूसरे से संबंधित हैं परंतु {1, 3 ,5} का कोई भी अवयव {2, 4} के किसी अवयव से संबंधित नहीं है।
Solution
A = {1, 2, 3, 4, 5}
R ={(a, b): |a - b| सम है}
(i) स्वतुल्य:
यह स्पष्ट है कि किसी भी तत्व a ∈ A के लिए, हमारे पास |a-a| है = 0 (जो सम है)।
∴R स्वतुल्य है।
(ii) सममित:
मान लीजिए (a, b) ∈ R.
=> |a - b| सम है।
=>|-(a-b)| =|b - a| सम है।
=> (b, a) R में
∴ R सममित है।
(iii) संक्रामक:
अब, मान लीजिए (a, b) ∈ R और (b, c) ∈ R.
=> |a-b| सम और |b - c| है सम है
=> (a - b) सम है और (b - c) सम है
=> (a - c) = (a - b) + (b - c) सम है दो सम पूर्णांकों का योग सम है]
=> |a - c | सम है
∴ R संक्रामक है।
अतः, R एक तुल्यता संबंध है।
अब, समुच्चय {1, 3, 5} के सभी अवयव एक दूसरे से संबंधित हैं क्योंकि इस उपसमुच्चय के सभी तत्व विषम हैं। इस प्रकार, किन्हीं दो अवयव के बीच अंतर का मापांक सम होगा।
इसी प्रकार, समुच्चय {2, 4} के सभी अवयव एक दूसरे से संबंधित हैं, क्योंकि इस उपसमुच्चय के सभी अवयव सम हैं।
साथ ही, उपसमुच्चय {1, 3, 5} का कोई भी अवयव {2, 4} के किसी भी अवयव से संबंधित नहीं हो सकता है, क्योंकि {1, 3, 5} के सभी अवयव विषम हैं और {2, 4} के सभी अवयव हैं यहां तक की। इस प्रकार, दो अवयवो (इन दो उपसमुच्चयों में से प्रत्येक से) के बीच अंतर का मापांक सम नहीं होगा। अतः अवायव समुच्चय {2, 4} से संबंधित नहीं है, क्योंकि समुच्चय के {1, 3, 5} के सभी अवायवीय अंतर हमेशा विषम होते हैं।
APPEARS IN
RELATED QUESTIONS
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
समुच्चय A = {1, 2, 3, ..., 13, 14} में संबंध R, इस प्रकार परिभाषित है कि
R = {(x, y) : 3x - y = 0}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
प्राकृत संख्याओं के समुच्चय N में R = {(x, y) : y = x + 5 तथा x < 4} द्वारा परिभाषित संबंध R.
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
समुच्चय A = {1, 2, 3, 4, 5, 6} में R = {x, y) : y भाज्य है x से) द्वारा परिभाषित संबंध R है।
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
समस्त पूर्णांकों के समुच्चय Z में R = {(x, y) : x - y एक पूर्णांक है} द्वारा परिभाषित संबंध R.
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x तथा y एक ही स्थान पर कार्य करते हैं}
जाँच कीजिए कि क्या समुच्चय {1, 2, 3, 4, 5, 6} में R = {(a, b) : b = a + 1} द्वारा परिभाषित संबंध R स्वतुल्य, सममित या संक्रामक है।
सिद्ध कीजिए कि R में R = {(a, b) : a ≤ b}, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
जाँच कीजिए कि क्या R में R = {(a, b) : a ≤ b3} द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक हैं?
सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y) : x तथा y में पेजों की संख्या समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।
सिद्ध कीजिए कि समुच्चय A = {x ∈ Z : 0 ≤ x ≤ 12}, में दिए गए निम्नलिखित संबंध R में से प्रत्येक एक तुल्यता संबंध है:
R = {(a, b) : |a - b|, 4 का एक गुणज है}, प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।
ऐसे संबंध का उदाहरण दीजिए, जो सममित हो परंतु न तो स्वतुल्य हो और न संक्रामक हो।
सिद्ध कीजिए कि समुच्चय A = {x ∈ Z : 0 ≤ x ≤ 12}, में दिए गए निम्नलिखित संबंध R में से प्रत्येक एक तुल्यता संबंध है:
R = {(a, b) : a = b}, प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x तथा y एक ही मोहल्ले में रहते हैं}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y से ठीक-ठीक 7 सेमी लंबा है}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y की पत्नी है}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y के पिता हैं}
ऐसे संबंध का उदाहरण दीजिए, जो स्वतुल्य तथा सममित हो किंतु संक्रामक न हो।
ऐसे संबंध का उदाहरण दीजिए, जो सममित तथा संक्रामक हो किंतु स्वतुल्य न हो।
सिद्ध कीजिए कि किसी समतल में स्थित बिंदुओं के समुच्चय में R = {(P, Q) : बिंदु P की मूल बिंदु से दूरी, बिंदु Q की मूल बिंदु से दूरी के समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। पुनः सिद्ध कीजिए कि बिंदु P ≠ (0, 0) से संबंधित सभी बिंदुओं का समुच्चय P से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केंद्र मूल बिंदु पर है।
सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय A में, R = {(P1, P2) : P1, तथा P2}, की भुजाओं की संख्या समान है। प्रकार से परिभाषित संबंध R एक तुल्यता संबंध है। 3, 4 और 5 लंबाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय A के सभी अवयवों का समुच्चय ज्ञात कीजिए।
मान लीजिए कि XY-तल में स्थित समस्त रेखाओं का समुच्चय L है और L में R = {(L1, L2) : L1 समान्तर है L2 के} द्वारा परिभाषित संबंध R है। सिद्ध कीजिए कि R एक तुल्यता संबंध है। रेखा y = 2x + 4 से संबंधित समस्त रेखाओं का समुच्चय ज्ञात कीजिए।
मान लीजिए कि समुच्चय {(1, 2, 3, 4)} में, R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)} द्वारा परिभाषित संबंध R है। निम्नलिखित में से सही उत्तर चुनिए।
एक अरिक्त समुच्चय X दिया हुआ है। P(X) जो कि X के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्नलिखित तरह से P(X) में एक संबंध R परिभाषित कीजिए: P(X) में उपसमुच्चयों A, B के लिए, ARB, यदि और केवल यदि A ⊂ B है। क्या R, P(X) में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए ।
यदि A = {1, 2, 3} हो तो अवयव (1, 2) वाले तुल्यता संबंधों की संख्या है।