हिंदी

The decomposition of N2O5(g) at 320K according to the following equation follows first order reaction - Chemistry

Advertisements
Advertisements

प्रश्न

The decomposition of N2O5(g) at 320K according to the following equation follows first order reaction:

`N_2O_(5(g))->2NO_(2(g))+1/2O_(2(g))`

The initial concentration of N2O5(g) is 1.24 x 10-2 mol. L-1 and after 60 minutes 0.20x10-2 molL-1. Calculate the rate constant of the reaction at 320K.

उत्तर

Data: `N_2O_(5(g))->2NO_(2(g))+1/2O_2`

`[N_2O_5]_@=1.24xx10^-2molL^-1`

`[N_2O_5]_t=0.20xx10^-2molL^-1`

k=?   t=60min

Solution : 

`k=2.303/t log""([N_2O_5])/([N_2O_5])`

`k=2.303/60log""((1.24xx10^-2))/((0.2xx10^-2))`

k=0.0383x0.7924

k= 0.303min-1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Define “zero order reaction”.


A → B is a first order reaction with rate 6.6 × 10-5m-s-1. When [A] is 0.6m, rate constant of the reaction is

  • 1.1 × 10-5s-1
  • 1.1 × 10-4s-1
  • 9 × 10-5s-1
  • 9 × 10-4s-1

For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained :

t/s 0 30 60
[CH3COOCH3] / mol L–1 0.60 0.30 0.15

(i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.

(ii) Calculate the average rate of reaction between the time interval 30 to 60 seconds.

(Given log 2 = 0.3010, log 4 = 0.6021)


The following data were obtained during the first order thermal decomposition of SO2Cl2 at a constant volume :

SO2Cl2 (g) → SO2 (g) + Cl2 (g)

Experiment Time/s–1 Total pressure/atm
1 0 0.4
2 100 0.7

Calculate the rate constant.

(Given : log 4 = 0.6021, log 2 = 0.3010)


From the rate expression for the following reaction, determine the order of reaction and the dimension of the rate constant.

\[\ce{C2H5Cl_{(g)} -> C2H4_{(g)} + HCl_{(g)}}\] Rate = k [C2H5Cl]


For the reaction: \[\ce{2A + B → A2B}\]  the rate = k[A][B]2 with k = 2.0 × 10−6 mol−2 L2 s−1. Calculate the initial rate of the reaction when [A] = 0.1 mol L−1, [B] = 0.2 mol L−1. Calculate the rate of reaction after [A] is reduced to 0.06 mol L−1.


Mention the factors that affect the rate of a chemical reaction.


A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is doubled?


A reaction is first order in A and second order in B. Write the differential rate equation.


A reaction is first order in A and second order in B. How is the rate affected on increasing the concentration of B three times?

 


A reaction is first order in A and second order in B. How is the rate affected when the concentrations of both A and B are doubled?


In a reaction between A and B, the initial rate of reaction (r0) was measured for different initial concentrations of A and B as given below:

A/mol L−1 0.20 0.20 0.40
B/mol L−1 0.30 0.10 0.05
r0/mol L−1 s−1 5.07 × 10−5 5.07 × 10−5 1.43 × 10−4

What is the order of the reaction with respect to A and B?


For a reaction R ---> P, half-life (t1/2) is observed to be independent of the initial concentration of reactants. What is the order of reaction?


Write the principle behind the following methods of refining:

Hydraulic washing


Consider a first order gas phase decomposition reaction given below :
\[\ce{A(g) -> B(g) + C(g)}\]
The initial pressure of the system before decomposition of A was pi. After lapse of time ‘t’, total pressure of the system increased by x units and became ‘pt’ The rate constant k for the reaction is given as ______.


Which of the following statements is not correct about order of a reaction.


Rate law for the reaction \[\ce{A + 2B -> C}\] is found to be Rate = k [A][B]. Concentration of reactant ‘B’ is doubled, keeping the concentration of ‘A’ constant, the value of rate constant will be ______.


For a complex reaction:

(i) order of overall reaction is same as molecularity of the slowest step.

(ii) order of overall reaction is less than the molecularity of the slowest step.

(iii) order of overall reaction is greater than molecularity of the slowest step.

(iv) molecularity of the slowest step is never zero or non interger.


For which type of reactions, order and molecularity have the same value?


In a reaction if the concentration of reactant A is tripled, the rate of reaction becomes twenty seven times. What is the order of the reaction?


Assertion: Order and molecularity are same.

Reason: Order is determined experimentally and molecularity is the sum of the stoichiometric coefficient of rate determining elementary step.


Assertion: The enthalpy of reaction remains constant in the presence of a catalyst.

Reason: A catalyst participating in the reaction, forms different activated complex and lowers down the activation energy but the difference in energy of reactant and product remains the same.


The rate of a chemical reaction double for every 10° rise in temperature. If the temperature is raised. by 50°C, the rate of relation by about:-


At concentration of 0.1 and 0.2 mol L–1 the rates of deem position of a compound were found to be 0.18 and 0.72 mol L–1 m–1. What is the order of the reaction?


The following data was obtained for chemical reaction given below at 975 K.

\[\ce{2NO(g) + 2H2(g) -> N2(g) + 2H2O(g)}\]

  [NO] [H2] Rate
  Mol L-1 Mol L-1 Mol L-1 s-1
(1) 8 × 10-5 8 × 10-5 7 × 10-9
(2) 24 × 10-5 8 × 10-5 2.1 × 10-8
(3) 24 × 10-5 32 × 10-5 8.4 × 10-8

The order of the reaction with respect to NO is ______. (Integer answer)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×