Advertisements
Online Mock Tests
Chapters
2: Functions
3: Binary Operations
4: Inverse Trigonometric Functions
5: Algebra of Matrices
6: Determinants
7: Adjoint and Inverse of a Matrix
8: Solution of Simultaneous Linear Equations
9: Continuity
10: Differentiability
11: Differentiation
12: Higher Order Derivatives
13: Derivative as a Rate Measurer
14: Differentials, Errors and Approximations
15: Mean Value Theorems
16: Tangents and Normals
17: Increasing and Decreasing Functions
18: Maxima and Minima
19: Indefinite Integrals
20: Definite Integrals
21: Areas of Bounded Regions
22: Differential Equations
23: Algebra of Vectors
24: Scalar Or Dot Product
25: Vector or Cross Product
26: Scalar Triple Product
▶ 27: Direction Cosines and Direction Ratios
28: Straight Line in Space
29: The Plane
30: Linear programming
31: Probability
32: Mean and Variance of a Random Variable
33: Binomial Distribution
![RD Sharma solutions for Mathematics [English] Class 12 chapter 27 - Direction Cosines and Direction Ratios RD Sharma solutions for Mathematics [English] Class 12 chapter 27 - Direction Cosines and Direction Ratios - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
Advertisements
Solutions for Chapter 27: Direction Cosines and Direction Ratios
Below listed, you can find solutions for Chapter 27 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.
RD Sharma solutions for Mathematics [English] Class 12 27 Direction Cosines and Direction Ratios Exercise 27.1 [Page 23]
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Find the angle between the lines whose direction cosines are given by the equations
(i) l + m + n = 0 and l2 + m2 − n2 = 0
Find the angle between the lines whose direction cosines are given by the equations
2l − m + 2n = 0 and mn + nl + lm = 0
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
RD Sharma solutions for Mathematics [English] Class 12 27 Direction Cosines and Direction Ratios Very Short Answers [Pages 24 - 25]
Define direction cosines of a directed line.
What are the direction cosines of X-axis?
What are the direction cosines of Y-axis?
What are the direction cosines of Z-axis?
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
Write the distance of the point (3, −5, 12) from X-axis?
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.
Write the distance of the point P (x, y, z) from XOY plane.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
Find the distance of the point (2, 3, 4) from the x-axis.
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
Write direction cosines of a line parallel to z-axis.
If a unit vector `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with } \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
RD Sharma solutions for Mathematics [English] Class 12 27 Direction Cosines and Direction Ratios MCQ [Pages 25 - 26]
For every point P (x, y, z) on the xy-plane,
x = 0
y = 0
z = 0
x = y = z = 0
For every point P (x, y, z) on the x-axis (except the origin),
x = 0, y = 0, z ≠ 0
x = 0, z = 0, y ≠ 0
y = 0, z = 0, x ≠ 0
x = y = z = 0
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
2
3
4
all of these
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
7
`sqrt(38)`
`sqrt(155)`
none of these
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
internally in the ratio 2 : 3
externally in the ratio 2 : 3
internally in the ratio 3 : 2
externally in the ratio 3 : 2
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
2
1
-1
-2
The distance of the point P (a, b, c) from the x-axis is
\[\sqrt{b^2 + c^2}\]
\[\sqrt{a^2 + c^2}\]
\[\sqrt{a^2 + b^2}\]
none of these
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
3 : 1 internally
3 : 1 externally
1 : 2 internally
2 : 1 externally
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
3 : 2 externally
3 : 2 internally
2 : 1 internally
2 : 1 externally
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
(−1, 2, −2)
(1, 2, 2)
(−1/9, 2/9, −2/9)
(3, 6, −9)
The angle between the two diagonals of a cube is
(a) 30°
(b) 45°
(c) \[\cos^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
(d) \[\cos^{- 1} \left( \frac{1}{3} \right)\]
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
\[\frac{1}{3}\]
\[\frac{2}{3}\]
\[\frac{4}{3}\]
\[\frac{8}{3}\]
Solutions for 27: Direction Cosines and Direction Ratios
![RD Sharma solutions for Mathematics [English] Class 12 chapter 27 - Direction Cosines and Direction Ratios RD Sharma solutions for Mathematics [English] Class 12 chapter 27 - Direction Cosines and Direction Ratios - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
RD Sharma solutions for Mathematics [English] Class 12 chapter 27 - Direction Cosines and Direction Ratios
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 27 (Direction Cosines and Direction Ratios) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 12 chapter 27 Direction Cosines and Direction Ratios are Introduction of Three Dimensional Geometry, Angle Between Two Lines, Equation of a Plane in Normal Form, Equation of a Plane Perpendicular to a Given Vector and Passing Through a Given Point, Shortest Distance Between Two Lines, Equation of a Line in Space, Direction Cosines and Direction Ratios of a Line, Three - Dimensional Geometry Examples and Solutions, Equation of a Plane Passing Through Three Non Collinear Points, Relation Between Direction Ratio and Direction Cosines, Intercept Form of the Equation of a Plane, Coplanarity of Two Lines, Distance of a Point from a Plane, Angle Between Line and a Plane, Angle Between Two Planes, Vector and Cartesian Equation of a Plane, Distance of a Point from a Plane, Plane Passing Through the Intersection of Two Given Planes.
Using RD Sharma Mathematics [English] Class 12 solutions Direction Cosines and Direction Ratios exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 27, Direction Cosines and Direction Ratios Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.