मराठी

Find the derivative of x2 cosx. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of x2 cosx.

बेरीज

उत्तर

Let y = x2 cosx

Differentiating both sides with respect to x, we

`(dy)/(dx) = d/(dx)(x^2 cos x)`

= `x^2 d/(dx) (cos x) + cos x d/(dx) (x^2)`

= `x^2(- sinx) + cosx (2x)`

= `2x cosx - x^2 sinx`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Solved Examples [पृष्ठ २३२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Solved Examples | Q 13 | पृष्ठ २३२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x^2 + 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate  of the following from first principle:

 x sin x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


(2x2 + 1) (3x + 2) 


x3 sin 


x3 e


x2 ex log 


x3 ex cos 


x4 (5 sin x − 3 cos x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×