Advertisements
Advertisements
प्रश्न
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
उत्तर
\[ {\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text{ Let } u = 3 x^2 + 2; v = 3 x^2 + 2\]
\[\text{ Then }, u' = 6x; v' = 6x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( 3 x^2 + 2 \right)\left( 3 x^2 + 2 \right) \right] = \left( 3 x^2 + 2 \right)\left( 6x \right) + \left( 3 x^2 + 2 \right)\left( 6x \right)\]
\[ = 18 x^3 + 12x + 18 x^3 + 12x\]
\[ = 36 x^3 + 24x\]
\[ 2^{nd} \text{ method }:\]
\[\frac{d}{dx}\left[ \left( 3 x^2 + 2 \right)^2 \right] = \frac{d}{dx}\left( 9 x^4 + 12 x^2 + 4 \right)\]
\[ = 36 x^3 + 24x\]
\[\text{ Using both the methods, we get the same answer }.\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of 99x at x = 100.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = tan x at x = 0
\[\frac{2}{x}\]
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan2 x
tan 2x
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
cos (x + a)
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 sin x log x
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of x2 cosx.
(ax2 + cot x)(p + q cos x)