मराठी

Tan 2x - Mathematics

Advertisements
Advertisements

प्रश्न

 tan 2

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan \left( 2x + 2h \right) - \tan \left( 2x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{sin \left( 2x + 2h \right)}{\cos \left( 2x + 2h \right)} - \frac{\sin \left( 2x \right)}{\cos \left( 2x \right)}}{h}\]
\[ = \lim_{h \to 0} \frac{sin \left( 2x + 2h \right) \cos \left( 2x \right) - \cos \left( 2x + 2h \right) \sin \left( 2x \right)}{h \cos \left( 2x + 2h \right) \cos \left( 2x \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h - 2x \right)}{h \cos \left( 2x + 2h \right) \cos \left( 2x \right)}\]
\[ = \frac{1}{\cos 2x} \lim_{h \to 0} \frac{\sin \left( 2h \right)}{2h} \times 2 \times \lim_{h \to 0} \frac{1}{\cos \left( 2x + 2h \right)}\]
\[ = \frac{1}{\cos 2x} \times 2 \times \frac{1}{\cos 2x}\]
\[ = \frac{2}{\cos^2 \left( 2x \right)}\]
\[ = 2 \sec^2 \left( 2x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 4.3 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = cos x at x = 0


k xn


(x + 2)3


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

 x2 sin x


\[\sin \sqrt{2x}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


xn tan 


xn loga 


(x3 + x2 + 1) sin 


sin x cos x


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×