English

Tan 2x - Mathematics

Advertisements
Advertisements

Question

 tan 2

Solution

ddx(f(x))=limh0f(x+h)f(x)h
=limh0tan(2x+2h)tan(2x)h
=limh0sin(2x+2h)cos(2x+2h)sin(2x)cos(2x)h
=limh0sin(2x+2h)cos(2x)cos(2x+2h)sin(2x)hcos(2x+2h)cos(2x)
=limh0sin(2x+2h2x)hcos(2x+2h)cos(2x)
=1cos2xlimh0sin(2h)2h×2×limh01cos(2x+2h)
=1cos2x×2×1cos2x
=2cos2(2x)
=2sec2(2x)

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 4.3 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

ax+bcx+d


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =π2

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =π2


13x


2x+3x2 


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

3x2


tan (2x + 1) 


 log3 x + 3 loge x + 2 tan x


(x3+1)(x2)x2 


(x+5)(2x21)x


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


xn tan 


(x3 + x2 + 1) sin 


x2 sin x log 


x5 ex + x6 log 


x−3 (5 + 3x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


x2+1x+1 


x2x+1x2+x+1 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = |x| + |x−1|, write the value of ddx(f(x))


Write the value of ddx(log|x|)


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of dydx 


If f (x) =  logx2write the value of f' (x). 


Mark the correct alternative in  of the following: 

If y=1+1x211x2 then dydx= 


Mark the correct alternative in each of the following: 

Iff(x)=xnanxa then f(a) 


Let f(x) = x – [x]; ∈ R, then f'(12) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.