Advertisements
Advertisements
Question
log3 x + 3 loge x + 2 tan x
Solution
\[\frac{d}{dx}\left( \log_3 x + 3 \log_e x + 2 \tan x \right)\]
\[ = \frac{d}{dx}\left( \frac{\log x}{\log 3} \right) + 3\frac{d}{dx}\left( \log_e x \right) + 2\frac{d}{dx}\left( \tan x \right)\]
\[ = \frac{1}{\log 3} . \frac{1}{x} + 3 . \frac{1}{x} + 2 \sec^2 x\]
\[ = \frac{1}{x \log 3} + \frac{3}{x} + 2 \sec^2 x\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
x2 ex
tan2 x
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
cos (x + a)
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is