Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Solution
Let f(x) = `(ax + b)/(cx + d)`
∴ f'(x) = `([d/dx (ax + b)](cx + d) - (ax + b) d/dx (cx + d))/((cx + d)^2)`
= `(a(cx + d) - (ax + b) .c)/((cx + d)^2)`
= `(acx + ad - acx - bc)/((cx + d)^2)`
= `(ad - bc)/((cx + d)^2)`
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of x at x = 1.
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
x2 + x + 3
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
ex log a + ea long x + ea log a
log3 x + 3 loge x + 2 tan x
xn loga x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(1 − 2 tan x) (5 + 4 sin x)
sin2 x
\[e^x \log \sqrt{x} \tan x\]
x3 ex cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b)n (cx + d)n
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{\sin^n x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]