English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ax+bcx+d - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`

Sum

Solution

Let f(x) = `(ax + b)/(cx + d)`

∴ f'(x) = `([d/dx (ax + b)](cx + d) - (ax + b) d/dx (cx + d))/((cx + d)^2)`

= `(a(cx + d) - (ax + b) .c)/((cx + d)^2)`

= `(acx + ad - acx - bc)/((cx + d)^2)`

= `(ad - bc)/((cx + d)^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 5 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of x at x = 1.


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


ex log a + ea long x + ea log a


 log3 x + 3 loge x + 2 tan x


xn loga 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(1 − 2 tan x) (5 + 4 sin x)


sin2 


\[e^x \log \sqrt{x} \tan x\] 


x3 ex cos 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b)n (cx d)


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{\sin^n x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×