Advertisements
Advertisements
Question
(1 − 2 tan x) (5 + 4 sin x)
Solution
\[\text{ Let } u = 1 - 2 \tan x; v = 5 + 4 \sin x \]
\[\text{ Then }, u' = - 2 \sec^2 x; v' = 4 \cos x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = u v' + v u'\]
\[\frac{d}{dx}\left[ \left( 1 - 2 \tan x \right)\left( 5 + 4 \sin x \right) \right]\]
\[ = \left( 1 - 2 \tan x \right)\left( 4 \cos x \right) + \left( 5 + 4 \sin x \right)\left( - 2 \sec^2 x \right)\]
\[ = 4 \cos x - 8 \times \frac{\sin x}{\cos x}\cos x - 10 \sec^2 x - 8 \times \frac{\sin x}{\cos^2 x}\]
\[ = 4 \cos x - 8 \sin x - 10 \sec^2 x - 8 \sec x \tan x \]
\[ = 4\left( \cos x - 2 \sin x - \frac{5}{2} \sec^2 x - 2 \sec x \tan x \right)\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
\[\frac{x + 1}{x + 2}\]
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
tan 2x
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
log3 x + 3 loge x + 2 tan x
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
(x sin x + cos x) (x cos x − sin x)
\[e^x \log \sqrt{x} \tan x\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Find the derivative of x2 cosx.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.