English

Differentiate Each of the Following from First Principle: 3 X 2 - Mathematics

Advertisements
Advertisements

Question

Differentiate each of the following from first principle:

\[3^{x^2}\]

Solution

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
`\frac{d}{dx}\left( 3^{x^2} \right) = \lim_{h \to 0} \frac{3^\left( x + h \right)^2 - 3^{x^2}}{h}`
\[ = \lim_{h \to 0} \frac{3^{x^2 + 2xh + h^2} - 3^{x^2}}{h}\]
\[ = \lim_{h \to 0} \frac{3^{x^2} \left( 3^{x^2 + 2xh + h^2 - x^2} - 1 \right)}{h} \times \frac{\left( h + 2x \right)}{\left( h + 2x \right)}\]
\[ = 3^{x^2} \lim_{h \to 0} \frac{3^{h\left( h + 2x \right)} - 1}{h\left( h + 2x \right)} \lim_{h \to 0} \left( h + 2x \right)\]
\[ = 3^{x^2} \log 3 \left( 2x \right)\]
\[ = 2x 3^{x^2} \log 3\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 3.12 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{\sqrt{3 - x}}\]


\[\sqrt{2 x^2 + 1}\]


x ex


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\tan \sqrt{x}\] 


ex log a + ea long x + ea log a


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


x3 sin 


x2 sin x log 


x−3 (5 + 3x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×