Advertisements
Advertisements
Question
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Solution
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{\cos \left( x + h \right)}{x + h} - \frac{\cos x}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x \cos \left( x + h \right) - \left( x + h \right) \cos x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \left( \cos x \cos h - \sin x \sin h \right) - x \cos x - h \cos x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \cos x \cos h - x \sin x \sin h - x \cos x - h \cos x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \cos x \cos h - x \cos x - x \sin x \sin h - h \cos x}{h x \left( x + h \right)}\]
\[ = x\cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \frac{x\sin x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\cos x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \cos x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} - \frac{x\sin x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\cos x}{x} \lim_{h \to 0} \frac{1}{x + h} \left[ \because \lim_{h \to 0} \frac{\sin^2 \frac{h}{2}}{\frac{h^2}{4}} = \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} = 1 \times 1, i . e . 1 \right]\]
\[ = - x \cos x \lim_{h \to 0} \frac{h}{2} - \frac{x\sin x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\cos x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \cos x \times 0 - \sin x \left( 1 \right)\frac{1}{x} - \frac{\cos x}{x}\frac{1}{x}\]
\[ = 0 - \frac{\sin x}{x} - \frac{\cos x}{x^2}\]
\[ = - \frac{\sin x}{x} - \frac{\cos x}{x^2}\]
\[ = \frac{- x \sin x - \cos x}{x^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sqrt{\tan x}\]
log3 x + 3 loge x + 2 tan x
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
xn tan x
x2 sin x log x
x3 ex cos x
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
x−4 (3 − 4x−5)
(ax + b) (a + d)2
(ax + b)n (cx + d)n
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.