Advertisements
Advertisements
Question
Differentiate of the following from first principle:
sin (x + 1)
Solution
\[ \frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( \sin \left( x + 1 \right) \right) = \lim_{h \to 0} \frac{\sin \left( x + h + 1 \right) - \sin \left( x + 1 \right)}{h}\]
\[\text{ We know }:\]
\[\sin C - \sin D = 2 \cos \left( \frac{C + D}{2} \right) \sin \left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{x + h + 1 + x + 1}{2} \right) \sin \left( \frac{x + h + 1 - x - 1}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + h + 2}{2} \right) \sin \left( \frac{h}{2} \right)}{h}\]
\[ = 2 \lim_{h \to 0} \cos \left( \frac{2x + h + 2}{2} \right) \lim_{h \to 0} \frac{\sin \left( \frac{h}{2} \right)}{\frac{h}{2}} \times \frac{1}{2}\]
\[ = 2 \cos \left( x + 1 \right) \times \frac{1}{2}\]
\[ = \cos \left( x + 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x + 1}{x + 2}\]
k xn
(x + 2)3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
x2 ex
\[\tan \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
x2 ex log x
xn loga x
(x3 + x2 + 1) sin x
x2 sin x log x
x5 ex + x6 log x
sin2 x
x−3 (5 + 3x)
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is