Advertisements
Advertisements
Question
(x2 + 1) (x − 5)
Solution
\[ \left( x^2 + 1 \right)\left( x - 5 \right) = x^3 - 5 x^2 + x - 5\]
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)^3 - 5 \left( x + h \right)^2 + \left( x + h \right) - 5 - \left( x^3 - 5 x^2 + x - 5 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 + 3 x^2 h + 3x h^2 + h^3 - 5 x^2 - 5 h^2 - 10xh + x + h - 5 - x^3 + 5 x^2 - x + 5}{h}\]
\[ = \lim_{h \to 0} \frac{3 x^2 h + 3x h^2 + h^3 - 5 h^2 - 10xh + h}{h}\]
\[ = \lim_{h \to 0} \frac{h \left( 3 x^2 + 3xh + h^2 - 5h - 10x + 1 \right)}{h}\]
\[ = \lim_{h \to 0} \left( 3 x^2 + 3xh + h^2 - 5h - 10x + 1 \right)\]
\[ = 3 x^2 - 10x + 1\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 + 1}{x}\]
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
\[\sqrt{\tan x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
cos (x + a)
(x sin x + cos x ) (ex + x2 log x)
\[e^x \log \sqrt{x} \tan x\]
x3 ex cos x
(2x2 − 3) sin x
x−3 (5 + 3x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is