English

X Sin X 1 + Cos X - Mathematics

Advertisements
Advertisements

Question

\[\frac{x \sin x}{1 + \cos x}\]

Solution

\[\text{ Let } u = x \sin x; v = 1 + \cos x\]
\[\text{ Then }, u' = x \cos x + \sin x; v' = - \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x \sin x}{1 + \cos x} \right) = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) - x \sin x\left( - \sin x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x \sin^2 x}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x \left( 1 - \cos^2 x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x + x - x\cos x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x + \sin x \right)}{\left( 1 + \cos x \right)^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 11 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 1}{x + 2}\]


x ex


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


3x + x3 + 33


2 sec x + 3 cot x − 4 tan x


cos (x + a)


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


x3 e


(x sin x + cos x) (x cos x − sin x


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(2x2 − 3) sin 


x4 (3 − 4x−5)


x−3 (5 + 3x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×