Advertisements
Advertisements
Question
2 sec x + 3 cot x − 4 tan x
Solution
\[\frac{d}{dx}\left( 2 sec x + 3 cot x - 4 \tan x \right)\]
\[ = 2\frac{d}{dx}\left( \sec x \right) + 3\frac{d}{dx}\left( \cot x \right) - 4\frac{d}{dx}\left( \tan x \right)\]
\[ = 2 \sec x \tan x - 3 \cos e c^2 x - 4 \sec^2 x\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\sqrt{\tan x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
x5 ex + x6 log x
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
logx2 x
x3 ex cos x
x4 (5 sin x − 3 cos x)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b)n (cx + d)n
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x}{\sin^n x}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`