English

2 Sec X + 3 Cot X − 4 Tan X - Mathematics

Advertisements
Advertisements

Question

2 sec x + 3 cot x − 4 tan x

Solution

\[\frac{d}{dx}\left( 2 sec x + 3 cot x - 4 \tan x \right)\]
\[ = 2\frac{d}{dx}\left( \sec x \right) + 3\frac{d}{dx}\left( \cot x \right) - 4\frac{d}{dx}\left( \tan x \right)\]
\[ = 2 \sec x \tan x - 3 \cos e c^2 x - 4 \sec^2 x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.3 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.3 | Q 12 | Page 34

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of f (xx at x = 1

 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\sqrt{\tan x}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x5 ex + x6 log 


(x sin x + cos x) (x cos x − sin x


(1 − 2 tan x) (5 + 4 sin x)


logx2 x


x3 ex cos 


x4 (5 sin x − 3 cos x)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x}{\sin^n x}\]


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Find the derivative of x2 cosx.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×