English

x4 (5 sin x − 3 cos x) - Mathematics

Advertisements
Advertisements

Question

x4 (5 sin x − 3 cos x)

Solution

\[\text{ Let } u = x^4 ; v = 5 \sin x - 3 \cos x\]
\[\text{ Then }, u' = 4 x^3 ; v' = 5 \cos x - 3 ( - \sin x) = 5 \cos x + 3 \sin x \]
\[\text{ According to the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = u v' + v u'\]
\[\frac{d}{dx}\left( x^4 \left( 5 \sin x - 3 \cos x \right) \right) = x^4 \left( 5 \cos x + 3 \sin x \right) + \left( 5 \sin x - 3 \cos x \right) 4 x^3 \]
\[ = x^3 \left( 5x \cos x + 3 x \sin x + 20 \sin x - 12 \cos x \right)\]
\[ = x^3 \left( \left( 3x + 20 \right) \sin x + \left( 5x - 12 \right) \cos x \right)\]
\[ = 3 x^4 \sin x + 20 x^3 \sin x + 5x \cos x - 12 \cos x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 20 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{1}{\sqrt{x}}\]


k xn


(x + 2)3


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle: 

sin x + cos x


tan2 


\[\cos \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x2 sin x log 


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


(ax2 + cot x)(p + q cos x)


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×