English

Let f(x) = x – [x]; ∈ R, then f'(12) is ______. - Mathematics

Advertisements
Advertisements

Question

Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.

Options

  • `3/2`

  • 1

  • 0

  • –1

MCQ
Fill in the Blanks

Solution

Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is 1.

Explanation:

Given f(x) = x – [x]

We have to first check for differentiability of f(x) at x = `1/2`

∴ Lf'`(1/2)` = L.H.D

= `lim_(h -> 0) (f[1/2 - h] - f[1/2])/(-h)`

= `lim_(h -> 0) ((1/2 - h) - [1/2 - h] - 1/2 + [1/2])/(-h)`

= `lim_(h -> 0) (1/2 - h - 0 - 1/2 + 0)/(-h)`

= `(-h)/(-h)`

= 1

Rf'`(1/2)` = R.H.D

= `lim_(h -> 0) (f(1/2 + h) - f(1/2))/h`

= `lim_(h -> 0) ((1/2 + h) - [1/2 + h] - 1/2 + [1/2])/h`

= `lim_(h -> 0) (1/2 + h - 1 - 1/2 + 1)/h`

= `h/h`

= 1

Since L.H.D = R.H.D

∴ f'`(1/2)` = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 244]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 67 | Page 244

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


 x2 + x + 3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


 tan 2


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\] 


 log3 x + 3 loge x + 2 tan x


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 sin 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(2x2 − 3) sin 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x}{1 + \tan x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Find the derivative of 2x4 + x.


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×