मराठी

Let f(x) = x – [x]; ∈ R, then f'(12) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.

पर्याय

  • `3/2`

  • 1

  • 0

  • –1

MCQ
रिकाम्या जागा भरा

उत्तर

Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is 1.

Explanation:

Given f(x) = x – [x]

We have to first check for differentiability of f(x) at x = `1/2`

∴ Lf'`(1/2)` = L.H.D

= `lim_(h -> 0) (f[1/2 - h] - f[1/2])/(-h)`

= `lim_(h -> 0) ((1/2 - h) - [1/2 - h] - 1/2 + [1/2])/(-h)`

= `lim_(h -> 0) (1/2 - h - 0 - 1/2 + 0)/(-h)`

= `(-h)/(-h)`

= 1

Rf'`(1/2)` = R.H.D

= `lim_(h -> 0) (f(1/2 + h) - f(1/2))/h`

= `lim_(h -> 0) ((1/2 + h) - [1/2 + h] - 1/2 + [1/2])/h`

= `lim_(h -> 0) (1/2 + h - 1 - 1/2 + 1)/h`

= `h/h`

= 1

Since L.H.D = R.H.D

∴ f'`(1/2)` = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 67 | पृष्ठ २४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x + 1}{x + 2}\]


Differentiate of the following from first principle:

 x cos x


Differentiate  of the following from first principle:

sin (2x − 3)


tan2 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


xn tan 


xn loga 


x2 sin x log 


(x sin x + cos x ) (ex + x2 log x


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×