मराठी

Find the Derivative of F (X) = 99x at X = 100 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of f (x) = 99x at x = 100 

उत्तर

\[f'(100) = \lim_{h \to 0} \frac{f(100 + h) - f(100)}{h}\]
\[ = \lim_{h \to 0} \frac{99(100 + h) - 99(100)}{h}\]
\[ = \lim_{h \to 0} \frac{9900 + 99h - 9900}{h}\]
\[ = \lim_{h \to 0} \frac{99h}{h}\]
\[ = \lim_{h \to 0} 99\]
\[ = 99\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.1 | Q 3 | पृष्ठ ३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–3 (5 + 3x).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (xx at x = 1

 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


 (x2 + 1) (x − 5)


x ex


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


\[\cos \sqrt{x}\]


cos (x + a)


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 e


(x3 + x2 + 1) sin 


x5 ex + x6 log 


(1 +x2) cos x


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×