मराठी

If Y = ( 2 − 3 Cos X Sin X ) , Find D Y D X a T X = π 4 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]

उत्तर

\[\frac{dy}{dx} = \frac{d}{dx}\left( \frac{2 - 3 \cos x}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2}{\sin x} \right) - \frac{d}{dx}\left( \frac{3 \cos x}{\sin x} \right)\]
\[ = 2\frac{d}{dx}\left( \cos ec x \right) - 3\frac{d}{dx}\left( \cot x \right)\]
\[ = - 2 \cos ec x \cot x + 3 \cos e c^2 x\]
\[\frac{dy}{dx} at x=\frac{\pi}{4}= - 2 \cos ec \frac{\pi}{4} \cot \frac{\pi}{4} + 3 \cos e c^2 \frac{\pi}{4}\]
\[ = - 2\left( \sqrt{2} \right)\left( 1 \right) + 3 \left( \sqrt{2} \right)^2 \]
\[ = - 2\sqrt{2} + 6\]
\[ = 6 - 2\sqrt{2}\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 20 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of 99x at x = 100.


Find the derivative of `2x - 3/4`


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


(x + 2)3


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


tan2 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


cos (x + a)


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


xn loga 


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×