हिंदी

If Y = ( 2 − 3 Cos X Sin X ) , Find D Y D X a T X = π 4 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]

उत्तर

\[\frac{dy}{dx} = \frac{d}{dx}\left( \frac{2 - 3 \cos x}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2}{\sin x} \right) - \frac{d}{dx}\left( \frac{3 \cos x}{\sin x} \right)\]
\[ = 2\frac{d}{dx}\left( \cos ec x \right) - 3\frac{d}{dx}\left( \cot x \right)\]
\[ = - 2 \cos ec x \cot x + 3 \cos e c^2 x\]
\[\frac{dy}{dx} at x=\frac{\pi}{4}= - 2 \cos ec \frac{\pi}{4} \cot \frac{\pi}{4} + 3 \cos e c^2 \frac{\pi}{4}\]
\[ = - 2\left( \sqrt{2} \right)\left( 1 \right) + 3 \left( \sqrt{2} \right)^2 \]
\[ = - 2\sqrt{2} + 6\]
\[ = 6 - 2\sqrt{2}\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 20 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{1}{x^3}\]


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 ex log 


(x sin x + cos x) (x cos x − sin x


(1 − 2 tan x) (5 + 4 sin x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x}{\sin^n x}\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×