हिंदी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): secx-1secx+1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`

योग

उत्तर

Let f(x) = `(sec x - 1)/(sec x + 1)`

f(x) = `(1/cos x -1)/(1/cos x +1)`

= `(1 - cos x)/(1 + cos x)`

By quotient rule,

f'(x) = `((1 + cosx)d/dx(1 - cosx)-(1 - cos x)d/dx(1 + cos x))/((1 + cos x^2))`

= `((1 + cos x) (sin x) - (1 - cos x) (-sin x))/((1 + cos x)^2)`

= `(sin x + cos x sin x + sin x - sin x cos x) /(1 + cos x)^2`

= `(2 sin x)/(1 + cos x)^2`

= `(2 sin x)/(1 + 1/sec x)^2 = (2 sin x)/((sec x + 1)^2/(sec^2 x))`

= `(2 sin x sec^2x)/ (secx+1)^2`

= `((2 sin x)/(cos x)sec x)/(sec x + 1)^2`

= `(2sec x tan x)/(sec x + 1)^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Miscellaneous Exercise | Q 18 | पृष्ठ ३१८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point:


\[\frac{1}{x^3}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate of the following from first principle:

 x cos x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


\[\sin \sqrt{2x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


cos (x + a)


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


xn tan 


(x3 + x2 + 1) sin 


(1 − 2 tan x) (5 + 4 sin x)


x3 ex cos 


x−3 (5 + 3x


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x}{\sin^n x}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×