Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
उत्तर
Let f(x) = `(sec x - 1)/(sec x + 1)`
f(x) = `(1/cos x -1)/(1/cos x +1)`
= `(1 - cos x)/(1 + cos x)`
By quotient rule,
f'(x) = `((1 + cosx)d/dx(1 - cosx)-(1 - cos x)d/dx(1 + cos x))/((1 + cos x^2))`
= `((1 + cos x) (sin x) - (1 - cos x) (-sin x))/((1 + cos x)^2)`
= `(sin x + cos x sin x + sin x - sin x cos x) /(1 + cos x)^2`
= `(2 sin x)/(1 + cos x)^2`
= `(2 sin x)/(1 + 1/sec x)^2 = (2 sin x)/((sec x + 1)^2/(sec^2 x))`
= `(2 sin x sec^2x)/ (secx+1)^2`
= `((2 sin x)/(cos x)sec x)/(sec x + 1)^2`
= `(2sec x tan x)/(sec x + 1)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
\[\frac{1}{x^3}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
x cos x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 sin x
\[\sin \sqrt{2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
cos (x + a)
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
xn tan x
(x3 + x2 + 1) sin x
(1 − 2 tan x) (5 + 4 sin x)
x3 ex cos x
x−3 (5 + 3x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is