Advertisements
Advertisements
प्रश्न
x−3 (5 + 3x)
उत्तर
\[\text{ Let } u = x^{- 3} ; v = \left( 5 + 3x \right)\]
\[\text{ Then }, u = - 3 x^{- 4} ; v' = 3\]
\[\text{ Using the product rule } :\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ x^3 \left( 5 + 3x \right) \right] = x^{- 3} . 3 + \left( 5 + 3x \right) \left( - 3 x^{- 4} \right)\]
\[ = 3 x^{- 3} - 15 x^{- 4} - 9 x^{- 3} \]
\[ = - 15 x^{- 4} - 6 x^{- 3}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
cos (x + a)
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
(x sin x + cos x) (x cos x − sin x)
(x sin x + cos x ) (ex + x2 log x)
(1 − 2 tan x) (5 + 4 sin x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x}{1 + \tan x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
`(a + b sin x)/(c + d cos x)`