हिंदी

X−3 (5 + 3x) - Mathematics

Advertisements
Advertisements

प्रश्न

x−3 (5 + 3x

उत्तर

\[\text{ Let } u = x^{- 3} ; v = \left( 5 + 3x \right)\]
\[\text{ Then }, u = - 3 x^{- 4} ; v' = 3\]
\[\text{ Using the product rule } :\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ x^3 \left( 5 + 3x \right) \right] = x^{- 3} . 3 + \left( 5 + 3x \right) \left( - 3 x^{- 4} \right)\]
\[ = 3 x^{- 3} - 15 x^{- 4} - 9 x^{- 3} \]
\[ = - 15 x^{- 4} - 6 x^{- 3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.4 | Q 24 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{x^2 - 1}{x}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\sqrt{\tan x}\]


\[\sin \sqrt{2x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


cos (x + a)


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(x sin x + cos x) (x cos x − sin x


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x}{1 + \tan x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×