Advertisements
Advertisements
प्रश्न
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
उत्तर
\[\frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( \cos \left( x - \frac{\pi}{8} \right) \right) = \lim_{h \to 0} \frac{\cos \left( x + h - \frac{\pi}{8} \right) - \cos \left( x - \frac{\pi}{8} \right)}{h}\]
\[We know:\]
\[\cos C - \cos D = - 2 \sin \left( \frac{C + D}{2} \right) \sin \left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{- 2 \sin \left( \frac{x + h - \frac{\pi}{8} + x - \frac{\pi}{8}}{2} \right) \sin \left( \frac{x + h - \frac{\pi}{8} - x + \frac{\pi}{8}}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{- 2 \sin \left( \frac{2x + h - \frac{\pi}{4}}{2} \right) \sin \left( \frac{h}{2} \right)}{h}\]
\[ = - 2 \lim_{h \to 0} \sin \left( \frac{2x + h - \frac{\pi}{4}}{2} \right) \lim_{h \to 0} \frac{\sin \left( \frac{h}{2} \right)}{\frac{h}{2}} \times \frac{1}{2}\]
\[ = - 2 \sin \left( x - \frac{\pi}{8} \right) \times \frac{1}{2}\]
\[ = - \sin \left( x - \frac{\pi}{8} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 ex
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
(x3 + x2 + 1) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
\[\frac{x}{1 + \tan x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`