हिंदी

A + B Sin X C + D Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{a + b \sin x}{c + d \cos x}\] 

उत्तर

\[\text{ Let } u = a + b \sin x; v = c + d \cos x\]
\[\text{ Then }, u' = b \cos x; v' = - d \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{a + b \sin x}{c + d \cos x} \right) = \frac{\left( c + d \cos x \right)b \cos x - \left( a + b \sin x \right)\left( - d \sin x \right)}{\left( c + d \cos x \right)^2}\]
\[ = \frac{bc \cos x + bd \cos^2 x + ad \sin x + bd \sin^2 x}{\left( c + d \cos x \right)^2}\]
\[ = \frac{bc \cos x + ad \sin x + bd \left( \sin^2 x + \cos^2 x \right)}{\left( c + d \cos x \right)^2}\]
\[ = \frac{bc \cos x + ad \sin x + bd}{\left( c + d \cos x \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 23 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\] 


 log3 x + 3 loge x + 2 tan x


\[\frac{2 x^2 + 3x + 4}{x}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


xn tan 


x2 sin x log 


x5 ex + x6 log 


(1 − 2 tan x) (5 + 4 sin x)


logx2 x


(2x2 − 3) sin 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×