हिंदी

A X 2 + B X + C P X 2 + Q X + R - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 

उत्तर

\[\text{ Let } u = a x^2 + bx + c; v = p x^2 + qx + r\]
\[\text{ Then }, u' = 2ax + b; v' = 2px + q\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{a x^2 + bx + c}{p x^2 + qx + r} \right) = \frac{\left( p x^2 + qx + r \right)\left( 2ax + b \right) - \left( a x^2 + bx + c \right)\left( 2px + q \right)}{\left( p x^2 + qx + r \right)^2}\]
\[ = \frac{2ap x^3 + 2aq x^2 + 2arx + bp x^2 + bqx + br - 2ap x^3 - 2bp x^2 - 2pcx - aq x^2 - bqx - cq}{\left( p x^2 + qx + r \right)^2}\]
\[ = \frac{\left( aq - bp \right) x^2 + 2\left( ar - xp \right)x + br - cq}{\left( p x^2 + qx + r \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 5 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


\[\frac{x + 2}{3x + 5}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


xn tan 


x5 ex + x6 log 


sin2 


logx2 x


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{a + \sin x}{1 + a \sin x}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


(ax2 + cot x)(p + q cos x)


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×