हिंदी

Differentiate of the Following from First Principle: Eax + B - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  of the following from first principle:

 eax + b

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^{ax + b} \right) = \lim_{h \to 0} \frac{e^{a(x + h) + b} - e^{ax + b}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{ax + b} e^{ah} - e^{ax + b}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{ax + b} \left( e^{ah} - 1 \right)}{h}\]
\[ = a e^{ax + b} \lim_{h \to 0} \frac{e^{ah} - 1}{ah}\]
\[ = a e^{ax + b} \left( 1 \right)\]
\[ = a e^{ax + b}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 2.03 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function at the indicated point:


\[\frac{1}{x^3}\]


\[\frac{x^2 + 1}{x}\]


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


Differentiate of the following from first principle:

 x cos x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sqrt{\tan x}\]


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


cos (x + a)


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


(1 +x2) cos x


\[e^x \log \sqrt{x} \tan x\] 


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x}{\sin^n x}\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×