Advertisements
Advertisements
प्रश्न
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
उत्तर
\[{\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text{ Let } u = x + 2; v = x + 3\]
\[\text{ Then }, u' = 1; v' = 1\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( x + 2 \right)\left( x + 3 \right) \right] = \left( x + 2 \right)1 + \left( x + 3 \right)1\]
\[ = x + 2 + x + 3\]
\[ = 2x + 5\]
\[ 2^{nd} \text{ method }:\]
\[\frac{d}{dx}\left[ \left( x + 2 \right)\left( x + 3 \right) \right] = \frac{d}{dx}\left( x^2 + 5x + 6 \right)\]
\[ = 2x + 5\]
\[\text{ Using both the methods, we get the same answer }.\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\cos \sqrt{x}\]
3x + x3 + 33
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x2 ex log x
xn loga x
(x3 + x2 + 1) sin x
(1 +x2) cos x
x−4 (3 − 4x−5)
(ax + b)n (cx + d)n
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
`(a + b sin x)/(c + d cos x)`