हिंदी

A X + B P X 2 + Q X + R - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{ax + b}{p x^2 + qx + r}\] 

उत्तर

\[\text{ Let } u = ax + b; v = p x^2 + qx + r\]
\[\text{ Then }, u' = a; v' = 2px + q\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{ax + b}{p x^2 + qx + r} \right) = \frac{\left( p x^2 + qx + r \right)a - \left( ax + b \right)\left( 2px + q \right)}{\left( p x^2 + qx + r \right)^2}\]
\[ = \frac{ap x^2 + aq x + ar - 2ap x^2 - 2bp x - aq x - bq}{\left( p x^2 + qx + r \right)^2}\]
\[ = \frac{- ap x^2 - 2bp x + ar - bq}{\left( p x^2 + qx + r \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 29 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


 tan 2


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\]


3x + x3 + 33


ex log a + ea long x + ea log a


 log3 x + 3 loge x + 2 tan x


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(1 +x2) cos x


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Find the derivative of f(x) = tan(ax + b), by first principle.


(ax2 + cot x)(p + q cos x)


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×