Advertisements
Advertisements
प्रश्न
\[\frac{1}{a x^2 + bx + c}\]
उत्तर
\[\text{ Let } u = 1; v = a x^2 + bx + c\]
\[\text{ Then }, u' = 0; v' = 2ax + b\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1}{a x^2 + bx + c} \right) = \frac{\left( a x^2 + bx + c \right)0 - 1\left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]
\[ = \frac{- \left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
k xn
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
tan2 x
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
log3 x + 3 loge x + 2 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x) (x cos x − sin x)
logx2 x
x−3 (5 + 3x)
(ax + b)n (cx + d)n
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]