हिंदी

1 a X 2 + B X + C - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1}{a x^2 + bx + c}\] 

उत्तर

\[\text{ Let } u = 1; v = a x^2 + bx + c\]
\[\text{ Then }, u' = 0; v' = 2ax + b\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1}{a x^2 + bx + c} \right) = \frac{\left( a x^2 + bx + c \right)0 - 1\left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]
\[ = \frac{- \left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 30 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


k xn


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


tan2 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


ex log a + ea long x + ea log a


 log3 x + 3 loge x + 2 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(x sin x + cos x) (x cos x − sin x


logx2 x


x−3 (5 + 3x


(ax + b)n (cx d)


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×