Advertisements
Advertisements
प्रश्न
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
उत्तर
\[\frac{d}{dx}\left( \frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3} \right)\]
\[ = \frac{d}{dx}\left( \cos ec x + 2^x . 2^3 + \frac{4}{\frac{\log 3}{\log x}} \right)\]
\[ = \frac{d}{dx}\left( \cos ec x \right) + 2^3 \frac{d}{dx}\left( 2^x \right) + \frac{4}{\log 3}\frac{d}{dx}\left( \log x \right)\]
\[ = - \cos ec x cot x + 2^3 . 2^x . \log 2 + \frac{4}{\log 3} . \frac{1}{x}\]
\[ = - \cos ec x cot x + 2^{x + 3} . \log 2 + \frac{4}{x\log 3}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan2 x
x4 − 2 sin x + 3 cos x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
sin x cos x
(x sin x + cos x ) (ex + x2 log x)
(1 +x2) cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
x−4 (3 − 4x−5)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of x2 cosx.
(ax2 + cot x)(p + q cos x)