हिंदी

(X Sin X + Cos X ) (Ex + X2 Log X) - Mathematics

Advertisements
Advertisements

प्रश्न

(x sin x + cos x ) (ex + x2 log x

उत्तर

\[\text{ Let } u = x \sin x + \cos x; v = e^x + x^2 \log x \]
\[\text{ Then }, u' = \left[ x\frac{d}{dx}\left( \sin x \right) + \sin x \frac{d}{dx}\left( x \right) \right] - \sin x \]
\[ = x \cos x + \sin x - \sin x \]
\[ = x \cos x\]
\[ v' = e^x + \left[ x^2 \frac{d}{dx}\left( \log x \right) + \log x \frac{d}{dx}\left( x^2 \right) \right]\]
\[ = e^x + x + 2x \log x \]
\[ \]
\[ \text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = u v ' + v u'\]
\[\frac{d}{dx}\left[ \left( x \sin x + \cos x \right)\left( e^x + x^2 \cos x \right) \right]\]
\[ = \left( x \sin x + \cos x \right)\left( e^x + x + 2x \log x \right) + \left( e^x + x^2 \log x \right) \left( x \cos x \right)\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.4 | Q 12 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


Find the derivative of `2x - 3/4`


Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


(x + 2)3


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan (2x + 1) 


3x + x3 + 33


 log3 x + 3 loge x + 2 tan x


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


xn tan 


(1 +x2) cos x


sin2 


logx2 x


(ax + b)n (cx d)


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Find the derivative of 2x4 + x.


Find the derivative of x2 cosx.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×