Advertisements
Advertisements
प्रश्न
Find the derivative of x at x = 1.
उत्तर
Let f(x) = x Accordingly,
`f'(1) = lim_(h → 0)(f(1 + h) - f(1))/h`
= ` lim_(h → 0)((1 + h)- 1)/h`
= `lim_(h->0)h/h`
= `lim_(h->0)(1)`
= 1
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
x2 sin x
log3 x + 3 loge x + 2 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
cos (x + a)
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
(x3 + x2 + 1) sin x
x5 ex + x6 log x
sin2 x
x3 ex cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{1 + \log x}{1 - \log x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.