Advertisements
Advertisements
प्रश्न
\[\frac{x + 1}{x + 2}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 1}{x + h + 2} - \frac{x + 1}{x + 2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 1 \right)\left( x + 2 \right) - \left( x + h + 2 \right)\left( x + 1 \right)}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{x^2 + 2x + hx + 2h + x + 2 - x^2 - x - hx - h - 2x - 2}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{h}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{1}{\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \frac{1}{\left( x + 0 + 2 \right)\left( x + 2 \right)}\]
\[ = \frac{1}{\left( x + 2 \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 + 1}{x}\]
x2 + x + 3
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
x2 ex
tan 2x
x4 − 2 sin x + 3 cos x
3x + x3 + 33
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b) (a + d)2
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.