Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
उत्तर
Let f(x) = `1/(ax^2 + bx + c)`
f'(x) = `([d/dx1](ax^2 + bx + c) - 1 d/dx (ax^2 + bx + c))/(ax^2 + bx + c)^2`
= `(0. (ax^2 + bx + c) - (2ax + b))/(ax^2 + bx + c)^2`
= `(-(2ax + b))/(ax^2 + bx + c)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{x + 1}{x + 2}\]
x2 + x + 3
x ex
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
tan 2x
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
log3 x + 3 loge x + 2 tan x
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
xn loga x
(x3 + x2 + 1) sin x
(x sin x + cos x ) (ex + x2 log x)
(1 − 2 tan x) (5 + 4 sin x)
sin2 x
logx2 x
x4 (5 sin x − 3 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Find the derivative of f(x) = tan(ax + b), by first principle.