Advertisements
Advertisements
प्रश्न
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
उत्तर
\[\text{ Let } u = 4x + 5 \sin x; v = 3x + 7 \cos x\]
\[\text{ Then }, u' = 4 + 5 \cos x; v' = 3 - 7 \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{4x + 5 \sin x}{3x + 7 \cos x} \right) = \frac{\left( 3x + 7 \cos x \right)\left( 4 + 5 \cos x \right) - \left( 4x + 5 \sin x \right)\left( 3 - 7 \sin x \right)}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{12x + 15 x \cos x + 28 \cos x + 35 \cos^2 x - 12x + 28 x \sin x - 15 \sin x + 35 \sin^2 x}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{15 x \cos x + 28 x \sin x + 28 \cos x15 \sin x + 35\left( \sin^2 x + \cos^2 x \right)}{\left( 3x + 7 \cos x \right)^2}\]
\[ = \frac{15 x \cos x + 28 x \sin x + 28 \cos x15 \sin x + 35}{\left( 3x + 7 \cos x \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x at x = 1.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan 2x
\[\sqrt{\tan x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
cos (x + a)
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
sin x cos x
(2x2 − 3) sin x
(ax + b)n (cx + d)n
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of x2 cosx.