हिंदी

Differentiate Each of the Following from First Principle: E √ 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^\sqrt{2x} \right) = \lim_{h \to 0} \frac{e^\sqrt{2(x + h)} - e^\sqrt{2x}}{h}\]
\[ = 2 \lim_{h \to 0} \frac{e^\sqrt{2x + 2h} - e^\sqrt{2x}}{2x + 2h - 2x}\]
\[ = 2 \lim_{h \to 0} \frac{e^\sqrt{2x} \left( e^\sqrt{2x + 2h} - \sqrt{2x} - 1 \right)}{\left( \sqrt{2x + 2h} \right)^2 - \left( \sqrt{2x} \right)^2}\]
\[ = 2 e^\sqrt{2x} \lim_{h \to 0} \frac{e^\sqrt{2x + 2h} - \sqrt{2x} - 1}{\left( \sqrt{2x + 2h} - \sqrt{2x} \right)\left( \sqrt{2x + 2h} + \sqrt{2x} \right)}\]
\[ = 2 e^\sqrt{2x} \lim_{h \to 0} \frac{e^\sqrt{2x + 2h} - \sqrt{2x} - 1}{\left( \sqrt{2x + 2h} - \sqrt{2x} \right)} \lim_{h \to 0} \frac{1}{\left( \sqrt{2x + 2h} + \sqrt{2x} \right)}\]
\[ = 2 e^\sqrt{2x} \left( 1 \right)\frac{1}{2\sqrt{2x}}\]
\[ = \frac{e^\sqrt{2x}}{\sqrt{2x}}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 3.09 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


Differentiate each of the following from first principle:

ex


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


x4 − 2 sin x + 3 cos x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


x3 sin 


xn loga 


sin x cos x


(1 +x2) cos x


sin2 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b) (a + d)2


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×