हिंदी

1 + 3 X 1 − 3 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1 + 3^x}{1 - 3^x}\]

उत्तर

\[\text{ Let } u = 1 + 3^x ; v = 1 - 3^x \]
\[\text{ Then }, u' = 3^x \log 3; v' = - 3^x \log 3\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1 + 3^x}{1 - 3^x} \right) = \frac{\left( 1 - 3^x \right) 3^x \log 3 - \left( 1 + 3^x \right)\left( - 3^x \log 3 \right)}{\left( 1 - 3^x \right)^2}\]
\[ = \frac{3^x \log 3 - 3^{2x} \log 3 + 3^x \log 3 + 3^{2x} \log 3}{\left( 1 - 3^x \right)^2}\]
\[ = \frac{2 . 3^x \log 3}{\left( 1 - 3^x \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 18 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 3x at x = 2 


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


k xn


Differentiate  of the following from first principle:

e3x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


 tan 2


(2x2 + 1) (3x + 2) 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x3 sin 


sin x cos x


(x sin x + cos x ) (ex + x2 log x


sin2 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×