English

1 + 3 X 1 − 3 X - Mathematics

Advertisements
Advertisements

Question

\[\frac{1 + 3^x}{1 - 3^x}\]

Solution

\[\text{ Let } u = 1 + 3^x ; v = 1 - 3^x \]
\[\text{ Then }, u' = 3^x \log 3; v' = - 3^x \log 3\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1 + 3^x}{1 - 3^x} \right) = \frac{\left( 1 - 3^x \right) 3^x \log 3 - \left( 1 + 3^x \right)\left( - 3^x \log 3 \right)}{\left( 1 - 3^x \right)^2}\]
\[ = \frac{3^x \log 3 - 3^{2x} \log 3 + 3^x \log 3 + 3^{2x} \log 3}{\left( 1 - 3^x \right)^2}\]
\[ = \frac{2 . 3^x \log 3}{\left( 1 - 3^x \right)^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 18 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of `2x - 3/4`


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = cos x at x = 0


\[\frac{2}{x}\]


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


tan2 


 tan 2


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


 log3 x + 3 loge x + 2 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


x2 sin x log 


(x sin x + cos x) (x cos x − sin x


sin2 


\[e^x \log \sqrt{x} \tan x\] 


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Find the derivative of f(x) = tan(ax + b), by first principle.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×