English

A + B Sin X C + D Cos X - Mathematics

Advertisements
Advertisements

Question

\[\frac{a + b \sin x}{c + d \cos x}\] 

Solution

\[\text{ Let } u = a + b \sin x; v = c + d \cos x\]
\[\text{ Then }, u' = b \cos x; v' = - d \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{a + b \sin x}{c + d \cos x} \right) = \frac{\left( c + d \cos x \right)b \cos x - \left( a + b \sin x \right)\left( - d \sin x \right)}{\left( c + d \cos x \right)^2}\]
\[ = \frac{bc \cos x + bd \cos^2 x + ad \sin x + bd \sin^2 x}{\left( c + d \cos x \right)^2}\]
\[ = \frac{bc \cos x + ad \sin x + bd \left( \sin^2 x + \cos^2 x \right)}{\left( c + d \cos x \right)^2}\]
\[ = \frac{bc \cos x + ad \sin x + bd}{\left( c + d \cos x \right)^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 23 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of f (x) = 99x at x = 100 


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


(2x2 + 1) (3x + 2) 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


xn tan 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


x4 (3 − 4x−5)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×