English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): cosx1+sinx - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`

Sum

Solution

Let f(x) = `(cos x)/(1 + sin x)`

By quotient rule,

f'(x) = `((1 + sin x)d/dx(cos x) - (cos x)d/dx (1 + sin x))/(1 + sin x)^2`

= `((1 + sin x) (-sin x) - (cos x) (cos x))/(1 + sin x)^2`

= `(-sin x - sin^2 x - cos^2 x)/(1 + sin x)^2`

= `(-sin x - (sin^2 x - cos^2 x))/(1 + sin x)^2`

= `(-sin x - 1)/(1 + sin x)^2`

= `(-(1 + sin x))/(1 + sin x)^2`

= `(-1 )/((1 + sin x))`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 16 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x–4 (3 – 4x–5).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


ex log a + ea long x + ea log a


 log3 x + 3 loge x + 2 tan x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


xn tan 


xn loga 


(x sin x + cos x) (x cos x − sin x


logx2 x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×