English

X 2 − 1 X - Mathematics

Advertisements
Advertisements

Question

\[\frac{x^2 - 1}{x}\]

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{(x + h )^2 - 1}{x + h} - \frac{x^2 - 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x^2 + 2xh + h^2 - 1}{x + h} - \frac{x^2 - 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 + 2 x^2 h + h^2 x - x - x^3 - x^2 h + x + h}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 h + h^2 x + h}{x(x + h)}\]
\[ = \lim_{h \to 0} \frac{h( x^2 + hx + 1)}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 + hx + 1}{x(x + h)}\]
\[ = \frac{x^2 + 1}{x^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 1.05 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x + 2}{3x + 5}\]


x ex


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(1 +x2) cos x


x5 (3 − 6x−9


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×