Advertisements
Advertisements
Question
Differentiate of the following from first principle:
sin (2x − 3)
Solution
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h - 3 \right) - \sin \left( 2x - 3 \right)}{h}\]
\[\text{ We know }:\]
\[sin C-sin D=2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + 2h - 3 + 2x - 3}{2} \right) \sin \left( \frac{2x + 2h - 3 + 2x - 3}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{4x + 2h - 6}{2} \right) \sin \left( h \right)}{h}\]
\[ = \lim_{h \to 0} 2 \cos \left( \frac{4x + 2h - 6}{2} \right) \lim_{h \to 0} \frac{\sin h}{h}\]
\[ = 2 \cos \left( \frac{4x - 6}{2} \right) \left( 1 \right)\]
\[ = 2 \cos \left( 2x - 3 \right)\]
\[ \]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 - 1}{x}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sin \sqrt{2x}\]
ex log a + ea long x + ea log a
(2x2 + 1) (3x + 2)
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
cos (x + a)
x3 ex
logx2 x
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
(ax2 + cot x)(p + q cos x)
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.