Advertisements
Advertisements
Question
\[\frac{2 x^2 + 3x + 4}{x}\]
Solution
\[\frac{d}{dx}\left( \frac{2 x^2 + 3x + 4}{x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2 x^2}{x} \right) + \frac{d}{dx}\left( \frac{3x}{x} \right) + \frac{d}{dx}\left( \frac{4}{x} \right)\]
\[ = 2\frac{d}{dx}\left( x \right) + 3\frac{d}{dx}\left( 1 \right) + 4\frac{d}{dx}\left( x^{- 1} \right)\]
\[ = 2\left( 1 \right) + 3\left( 0 \right) + 4\left( - 1 \right) x^{- 2} \]
\[ = 2 - \frac{4}{x^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x + 2}{3x + 5}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
x4 − 2 sin x + 3 cos x
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 ex
x2 ex log x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
(2x2 − 3) sin x
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of 2x4 + x.
Find the derivative of f(x) = tan(ax + b), by first principle.