English

e x − tan x cot x − x n - Mathematics

Advertisements
Advertisements

Question

\[\frac{e^x - \tan x}{\cot x - x^n}\] 

Solution

\[\text{ Let } u = e^x - \tan x; v = \cot x - x^n \]
\[\text{ Then }, u' = e^x - \sec^2 x; v' = - \cos e c^2 x - n x^{n - 1} \]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{e^x - \tan x}{cot x - x^n} \right) = \frac{\left( \cot x - x^n \right)\left( e^x - \sec^2 x \right) - \left( e^x - \tan x \right)\left( - \cos e c^2 x - n x^{n - 1} \right)}{\left( \cot x - x^n \right)^2}\]
\[ = \frac{\left( \cot x - x^n \right)\left( e^x - \sec^2 x \right) + \left( e^x - \tan x \right)\left( \cos e c^2 x + n x^{n - 1} \right)}{\left( \cot x - x^n \right)^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 4 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of `2x - 3/4`


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{x^2 + 1}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


x ex


Differentiate of the following from first principle:

(−x)−1


\[\cos \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


ex log a + ea long x + ea log a


 log3 x + 3 loge x + 2 tan x


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 ex log 


xn tan 


(x3 + x2 + 1) sin 


(1 − 2 tan x) (5 + 4 sin x)


logx2 x


x4 (3 − 4x−5)


(ax + b) (a + d)2


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{{10}^x}{\sin x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×